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Abstract

Automatically estimating animal poses from videos is im-
portant for studying animal behaviors. Existing methods
do not perform reliably since they are trained on datasets
that are not comprehensive enough to capture all neces-
sary animal behaviors. However, it is very challenging to
collect such datasets due to the large variations in animal
morphology. In this paper, we propose an animal pose la-
beling pipeline that follows a different strategy, i.e. test time
optimization. Given a video, we fine-tune a lightweight ap-
pearance embedding inside a pre-trained general-purpose
point tracker on a sparse set of annotated frames. These
annotations can be obtained from human labelers or off-
the-shelf pose detectors. The fine-tuned model is then ap-
plied to the rest of the frames for automatic labeling. Our
method achieves state-of-the-art performance at a reason-
able annotation cost. We believe our pipeline offers a valu-
able tool for the automatic quantification of animal behav-
ior. Visit our project webpage at https://zhuoyang-
pan.github.io/animal-labeling.

1. Introduction

Accurate quantification of animal behavior is essential to
understanding their brain by connecting it to the studied
subjects’ neural activities [9]. Such quantification requires
precise detection and tracking of animal poses, preferably
in a markerless fashion to avoid intrusiveness. This ne-
cessitates the development of automatic pose detectors and
trackers that are applicable to in-the-wild videos. Despite
significant progress in human pose estimation [2, 3, 14], ac-
curately estimating animal poses remains challenging due
to the large variations in body morphology. These vari-
ations make it hard to collect comprehensive datasets and
thus train generalizable models.

Previous works on animal pose estimation, therefore, fo-
cus primarily on specific animal species [4, 8–11]. These
works build automated tools that generally incorporate
a pose detector [9–11] and sometimes also an object
tracker [4, 8]. Users first need to manually label a set of
frames (normally several hundreds). Then the models are
trained on this set and can be subsequently deployed on
new instances from the same animal species. Such pipelines

need to be carried out for each animal species of inter-
est, and are not applicable to cases where multiple animal
species are present. Other works train a single foundation
model on datasets containing multiple animal species to
achieve cross-species generalization [14, 16]. They, how-
ever, manifest unsatisfying generalization performance.

We argue that instead of following this traditional
paradigm and attempting to achieve generalized perfor-
mance across animal species and scenarios, it is more de-
sirable and practical to adopt a test time optimization strat-
egy. Specifically, we propose to train a model on each test
instance. The model is trained on a sparse set of anno-
tated frames from the input video, which can be obtained
from manual annotation or a pre-trained pose detector [14].
The trained model is then applied to the rest of the frames.
We build our model based on the crucial insight that we
can share the knowledge of temporal tracking across all in-
stances, while the unique knowledge we need in each ex-
ample lies in appearance. Hence, we initialize our model
from a state-of-the-art general-purpose point tracker [7] and
only fine-tune a lightweight appearance embedding in it
which encodes the appearance-specific information. With
this strategy, our method achieves a 4-pixel accuracy of
81.6% when supervised with only 6 annotated frames for a
video of 60 frames, and the optimization converges in about
3mins1. These values can be traded off depending on a pref-
erence for low annotation cost or high estimation quality.

Since our method does not rely on any particular as-
sumption about animal species or morphology, it can be di-
rectly applied to any video of interest. We test our method
on two datasets from different domains, namely DAVIS-
Animals for quadruped animals and DeepFly3D [5] for teth-
ered drosophilas. Our method produces high-quality per-
frame annotations while achieving state-of-the-art perfor-
mance on both datasets.

In summary, we propose a framework for dense ani-
mal pose annotation that follows a test time optimization
paradigm. We initialize the model with a general-purpose
point tracker, and fine-tune a lightweight appearance em-
bedding for each test instance. Our method can annotate
cross-species animal videos at a high quality and can be
scaled up at a reasonable cost. We evaluate our method

1Correct when error is within 4 pixels. Averaged values over 15 videos.
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Figure 1. System overview. Our pipeline consists of three stages.
First, users define query keypoints and provide sparse annotations.
Our model is then optimized w.r.t. these annotations. Finally, the
optimized model is applied to the remaining frames for dense pose
labeling. We show two examples from the DeepFly3D (left) and
DAVIS-Animals (right) datasets.

on datasets covering different animal species and scenarios,
and show that it produces state-of-the-art results. Check the
project webpage for video results.

2. Method
An overview of our pipeline is shown in Fig. 1. Our
pipeline takes an input video sequence {It}Tt=1, query
points {(xq

0,y
q
0)} on the first frame that define the keypoints

to track, and a sparse set of annotated future keypoint posi-
tions {(xa

t ,y
a
t )}t∈Ta

, where Ta represents the time steps at
which the keypoints are annotated. The goal is to predict
the keypoint positions in the remaining frames by leverag-
ing general-purpose point trackers. We next provide es-
sential background on a state-of-the-art point tracker Co-
Tracker3 [6], upon which we build our pipeline. After that,
we describe our test time optimization strategy in detail.

2.1. Preliminaries: CoTracker3
CoTracker3 [7] takes a video sequence {It}Tt=1 and query
points {(xa

t ,y
a
t )} as input to generate estimated point posi-

tions in each frame.
Feature encoding. CoTracker3 first computes dense fea-
ture maps with a convolutional neural network for each
video frame, i.e. Φt = Φ(It), t = 1, ..., T . The network
downsamples the input video by a spatial factor k = 4
and computes feature maps at S = 4 different scales, i.e.
Φs

t ∈ Rd× H

k2s−1 × W

k2s−1 , s = 1, . . . , S.
Tracking features. Points in CoTracker3 are de-
scribed by extracting a square neighborhood with
size (2∆ + 1)2 of features at different scales, i.e.
ϕs
t =

[
Φs

t

(
xt

ks + δ, yt

ks + δ
)
: δ ∈ Z, ∥δ∥∞ ≤ ∆

]
, s = 1, . . . , S .

Φs
t (xt,yt) denotes binearly interpolating Φs

t around
(xt,yt), which can be either the query points or the current
track estimates.
Iterative updates. Inference is carried out as an iterative
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Figure 2. Test time optimization.

update process. The track estimates are first initialized from
the positions of the query points. Each iteration begins by
measuring the similarity between tracking features for cur-
rent estimates ϕs

t and query points ϕs
0, represented as cor-

relation features Corrt = MLP (⟨ϕs
0, ϕ

s
t ⟩) , s = 1, . . . , S,

where ⟨ϕs
0, ϕ

s
t ⟩ = stack((ϕs

0)
⊺ϕs

t ). These correlation fea-
tures along with other information are subsequently passed
into a transformer to predict the position deltas. We refer to
the original paper for all details.
Discussions. We find in our experiments that CoTracker3
does not perform reliably when applied out of the box to
animal videos, possibly due to the scarcity of high-quality
annotations across multiple animal species. It often pro-
duces stationary or highly jittery point estimates because it
confuses the keypoints to track with points on background
or other objects, which makes it unsuitable to be used in
animal behavioral studies. In the following, we propose a
test time optimization strategy that finetunes CoTracker3 on
each test instance. This strategy greatly improves the pose
detection performance at a manageable cost.

2.2. Test Time Optimization
Our key idea is to optimize the tracking features for each
query point ϕ̂0 on a single video while keeping other com-
ponents fixed. These optimized features essentially serve as
an “appearance embedding” that encodes video-specific ap-
pearance information, hence greatly helping improve track-
ing performance. We describe this process in detail below,
which is also illustrated in Fig. 2.
Feature initialization. Instead of initializing the query fea-
tures only from the square neighborhood of the first frame’s
feature map ϕ0, we choose to initialize with the square
neighborhood of features from all the annotated frames
t ∈ Ta:

ϕ̂0 :=
1

|Ta|+ 1

(
ϕ1
0 +

∑
t∈Ta

ϕ1
t

)
(1)



Iterative updates. The updated correlation features are
calculated by

Ĉorrt =
(

MLP
(
⟨ϕ̂0, ϕ

1
t ⟩
)
, . . . ,MLP

(
⟨ϕ̂0, ϕ

S
t ⟩
))

(2)

We then repeat the iterative update process as done in the
original CoTracker3, using the updated correlation features.
Loss function. Our loss function consists of a primary
tracking loss followed by a regularization term. For the
tracking loss, we follow CoTracker3 [7] to supervise both
the visible and occluded tracks using the Huber loss with a
threshold of 6 and exponentially increasing weights:

Ltrack(P,P⋆) =

M∑
m=1

γM−mLH(P,P⋆) (3)

where P and P⋆ denote the annotated and estimated key-
points, respectively. M is the number of update iterations,
γ = 0.8 is a discount factor, and LH is the Huber Loss.

To ensure the tracking features remain close to the origi-
nal sampled features, we apply an additional regularization
term that penalizes significant deviations:

Lreg =
1

N

N∑
i=1

∥ϕ1i
0 − ϕ̂i

0∥1 (4)

where N is the number of keypoints. Our final loss is thus:

L = Ltrack + λLreg (5)

We use λ = 0.01 in all experiments.
Optimization details. For each video, we optimize for
1,000 gradient update steps, starting with a learning rate of
1 × 10−3 that linearly decays to 1 × 10−5 using the Adam
optimizer. For a 100-frame 480p video, the optimization
converges in about 3 minutes on an NVIDIA RTX A6000.

3. Experiments
Datasets. Animal videos with dense high-quality pose an-
notations are scarce. APT36k [15] consists of 36k annotated
frames from 2.4k videos of 30 animal species, but the key-
point annotations are very jittery. BADJA [1] samples 7 an-
imal videos from the DAVIS [12] dataset along with 2 other
videos and provides high-quality dense annotations. How-
ever, the keypoint definition of BADJA differs from that of
ViTPose [14], which is an important baseline to compare.
Hence, we sample 15 videos from DAVIS and manually an-
notate them, following the keypoint definition of ViTPose.
We refer to this dataset as DAVIS-Animals.

To demonstrate that our pipeline can be directly applied
to videos of different animal species, we further evaluate
our method on DeepFly3D [5], a dataset specifically for
tethered drosophilas. We sample 15 videos from the dataset,
each for 100 frames with 19 annotated keypoints.
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Figure 3. Qualitative comparison on DeepFly3D. Query points
are shown in the frame on top, while estimated points in other
frames. Keypoints with the same color / number denote corre-
spondence. Red circles highlight estimation mistakes.
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Figure 4. Qualitative comparison on DAVIS-Animals. Query
points are color-coded in the frame on top. In other frames, esti-
mated points are shown in blue, while ground-truth points are in
green. Red lines indicate tracking errors relative to the correspond-
ing ground truth positions. Note that CoTracker3 + sup. (bottom
right) is our adapted version.

Metrics. We follow SuperAnimal [16] to report 1) δavg,
which measures the average position accuracy of all points
across 5 thresholds: 1, 2, 4, 8, and 16 pixels. Follow-
ing [17], images are resized to 256 × 256 pixels before cal-
culation; 2) a jittering metric J , which is the average of the
unsigned speed across all examples and keypoints. For a
given keypoint k and example e, Jk,e is computed as:

Jk,e =
1

Nk,e

Nk,e∑
i=1

|vk,e,i| (6)

where Nk,e is the total number of speed measurements



for keypoint k in example e. 3) a masked jittering met-
ric Jmasked, which enhances the jittering metric by focusing
on correctly localized keypoints while penalizing incorrect
ones. The metric is computed as:

Jmasked,k,e =
1

Nk,e

Nk,e∑
i=1

vk,e,i ·

{
1, dk,e,i < 4

10, dk,e,i ≥ 4
(7)

where dk,e,i is the distance to the ground truth.
Baselines. We compare against state-of-the-art general-
purpose point trackers (PIPS++ [17], DINO-Tracker [13],
and CoTracker3 [7]), a cross-species pose estimator de-
veloped specifically for quadrupeds (SuperAnimal [16]), as
well as a general-purpose pose estimator applicable for both
humans and animals(ViTPose [14]). For a fair compari-
son, we also fine-tune them using the same strategy as our
method (+sup.). We next describe each in more detail.
PIPs++ (+sup.) Similar to CoTracker3 [7], PIPs++ [17]
computes the cross correlation between the features at cur-
rent timestep and that at previous timestep. For PIPS++
+sup., we instead compute the correlations between the cur-
rent features and an optimizable features.
DINO-Tracker (+sup.) For each video, DINO-Tracker [13]
fine-tunes a Delta-DINO encoder and a CNN-refiner
through optical flows and DINO-feature correspondence.
At inference time, they calculate the similarity between the
refined DINO features sampled at the query point. Since
this method is self-supervised, for a fair comparison, we
add our tracking loss in addition to their original loss de-
signs and finetune their original networks.
ViTPose++-H (+sup.) ViTPose++-H [14] is a pose estima-
tion model trained on multiple humans and animals dataset.
It is the SOTA model for animal pose estimation. We fine-
tune this model on the annotated frames and test the perfor-
mance of the fine-tuned model on the testing frames.
SuperAnimal (+sup.) We use the SuperAnimal-Quadruped
model provided by Superanimal [16], which is trained
on multiple quadruped datasets. We enable their video-
adaption option, which is another test time optimization
technique they propose to improve estimation accuracy and
mitigate jittering. They first obtain the pseudolabels every
10 frames by estimating the poses, and then use these es-
timated poses to finetune the estimator. We change their
pseudolabels to the ground truth annotations and use these
ground truth labels to finetune the estimator.

3.1. Quantitative Comparison
For this experiment, we train our method and baselines
with additional supervision on frames 0, 10, ..., and test on
frames 5, 15, .... The results are provided in Tab. 1. Our
method achieves the highest δavg score on both datasets,
surpassing baselines that are applied out of the box or fine-
tuned with test time optimization (+sup.). For the jittering

Method DeepFly3D DAVIS-Animals

δavg ↑ J ↓ Jmasked ↓ δavg ↑ J ↓ Jmasked ↓
SuperAnimal [16] — — — 41.07 15.19 10.90
ViTPose++-H [14] — — — 52.56 9.52 9.22
PIPs++ [17] 45.91 0.55 5.32 46.19 4.41 7.67
DINO-Tracker [13] 48.51 1.95 5.40 49.09 8.41 8.61
CoTracker3 [7] 50.26 0.60 4.92 49.59 6.26 8.03

SuperAnimal +sup. — — — 57.54 10.36 9.19
ViTPose++-H +sup. — — — 62.17 8.21 7.94
PIPs++ +sup. 58.89 2.14 3.72 51.17 8.20 8.13
DINO-Tracker+sup. 67.29 2.91 3.39 63.33 9.11 8.67
Ours 70.80 1.46 2.54 67.53 7.04 7.15

Table 1. Quantitative comparison with baselines.

metric, our method performs the best compared to base-
lines fine-tuned with test time optimization, but is worse
than PIPs++ and CoTracker3. This is because PIPs++ and
CoTracker3 produce estimates that confuse with the back-
ground more often, which tend to move less and result
in a deceptively low jittering score (e.g. keypoints 4 and
5 in Fig. 3). To better evaluate the tracking quality, we
use the masked jittering metric Jmasked, which focuses
on correctly localized keypoints while penalizing incorrect
ones. As shown in Tab. 1, our method achieves the lowest
Jmasked score across all methods.

3.2. Qualitative Comparison

We compare qualitatively with selected baselines in Figs. 3
and 4. In Fig. 3, both CoTracker3 [7] and PIPs++ [17] have
obvious errors on keypoints on legs. For PIPs++, tracking
is noticeably more accurate after test time optimization but
errors still occur frequently. Comparatively, our method is
able to track the keypoints most reliably and produce the
least errors. In Fig. 4 we observe similar trends. For all
methods, fine-tuning with test time optimization noticeably
reduces tracking errors. Among all methods, our method is
the most accurate, also producing the least jitter.

4. Conclusion

We propose an animal pose labeling pipeline that features
high-quality pose labeling while at a reasonable cost for
manual annotation. Our key idea is to adopt a test time
optimization strategy to fine-tune a pretrained model with
sparse annotations on the example we wish to annotate. By
leveraging a general-purpose point tracker, we inherit valu-
able knowledge of temporal tracking and only fine-tune a
lightweight appearance embedding that encodes example-
specific appearance information. Our method achieves
state-of-the-art pose estimation performance across differ-
ent animal species, offering a valuable tool for accurate an-
imal behavior quantification.
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